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1. Introduction

Supersymmetry provides us with a powerful tool in obtaining or at least describing solutions

of supergravity theories. Using the G-structure analysis, originally developed in [1 – 5], one

is able to write down the constraints that the bosonic fields need to satisfy in order for the

background they create to be supersymmetric. In general the constraints are general and

illuminating but the method is more fruitful when one makes a sensible reduction based on

symmetry grounds. The method has been applied to several interesting configurations [6 –

11] and interesting results were obtained.

One of the most interesting cases was presented in [12] where the authors, among other

results, demonstrated a one to one mapping between 1/2 BPS states in minimal type IIB

supergravity and states in N = 4 SYM preserving the same amount of supersymmetry.

The procedure exploits the fact that on both sides the states have the same moduli space

which is parametrized by the phase space of N non-relativistic massless fermions in a simple

harmonic potential. The field theory study was carried out in [13] and [14]. The symplectic

form of the moduli space variables was later computed [15, 16] and was shown to agree

with the symplectic form of the matrix model relevant to the field theory states [17].

In this paper we present an obvious extension of our previous effort [18] in generalizing

the analysis of [12] to bosonic states preserving only SO (4)×SO (2) . The new element that

we are concerned with is the vector field that can be added to gauge the original SO (2) .

Having a non-zero field strength allows us to have more general U (1) spinor charge, which

is not constrained by the SO (4) chirality of the Killing spinor. As in the ungauged case we

are able to demonstrate a four dimensional Kahler structure. In addition we are also able

to show that the gauge vector can be parametrized by a single scalar function. We finally
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show that the supersymmetry constraints give us a Monge-Ampere type of equation along

with a non-linear constrain. The Bianchi identities that we want the five form to satisfy

give us an additional constrain.

The paper is structured in three sections. In the first section we present our ansatz and

we also show the technical highlights of the supersymmetry analysis. In the second section

we embed known supersymmetric solutions in our general ansatz where the significance of

the U (1) spinor charge becomes more transparent. In the last section we present a summary

and conclusions. We also include an appendix where we give the technical details of the

supersymmetry analysis for the interested reader.

2. The SO (4) × SO (2) symmetric ansatz and the SUSY analysis

In this section we will briefly describe the main steps of the supersymmetry analysis.

Following the LLM analysis [12] we first reduce the ten dimensional theory by imposing

SO (4) × SO (2) symmetry on the fields of minimal type IIB supergravity, namely the

metric gMN and the self-dual five form field strength FM1M2M3M4M5
. Our starting point is

the ansatz

ds2 = gµνdxµdxν + eH+GdΩ̂2
3 + eH−G (dψ + A)2

F(5) = F̂(2) ∧ dΩ̂3 + F̃(4) ∧ (dψ + A) . (2.1)

Where the Greek indices µ, ν = 1 . . . 6.

In general, the constraints obtained by the G-structure analysis don’t have to nece-

serily satisfy the field equations of type IIB supergravity. The check that guarantees the

compatibility of the configuration with the type IIB field equations is the Bianchi identities

that the five form should satisfy [19]. This argument is based on the integrability of the

Killing spinor equation. For our case this means that the various form field strengths that

come from the reduction of the five form have to satisfy

F̂2 = 2 e2GeH ⋆6 F̃4

and the Bianchi identity for the five form gives

dF̂(2) = 0

dF̃(4) = 0

F̃(4) ∧ F = 0. (2.2)

The problem that we would like to confront is to identify all the constraints imposed

on the previously bosonic fields so that the Killing spinor equation

DMη = ∇Mη +
ı

480
ΓM1...M5FM1...M5

ΓMη = 0. (2.3)

will admit at least one non-trivial solution. After reducing on S3 × S1, as we describe

in appendix A we are left with a six dimensional spinor ε, a differential equation in six
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dimensions and two algebraic ones coming from the reduction on S3 and S1 respectively

[

∇µ −
ın

2
Aµ +

1

4
e

1

2
(H−G)γ7γ

νFνµ − ıNγµ

]

ε = 0 (2.4)

[

−αe−
1

2
(H+G)γ7 + ıne−

1

2
(H−G) −

1

4
e

1

2
(H+G) 6 F + γ7γ

λ∂λH

]

ε = 0 (2.5)

[

ıαe−
1

2
(H+G) − ne−

1

2
(H−G)γ7 − ıγλ∂λG −

ı

4
e

1

2
(H+G) 6 Fγ7 + 4N

]

ε = 0 (2.6)

N = −
1

4
6 F̂ e−

3

2
(G+H) (2.7)

where n is the U (1) spinor charge and α is the SO (4) chirality.

At this point we introduce the spinor bilinears that one can construct from the six

dimensional Killing spinor

f1 = ε̄γ7ε (2.8)

f2 = ıε̄ε (2.9)

Kµ = ε̄γµε (2.10)

Lµ = ε̄γµγ7ε (2.11)

Yµλ = ıε̄γµνγ7ε (2.12)

Vµν = ε̄γµνε (2.13)

Ωµνλ = ıε̄γµνλε. (2.14)

As we show in appendix B one can prove that

∇(µ Kν) = 0

which suggests that Kµ is a Killing vector for the six dimensional metric. At this point we

impose the condition

KµFµν = 0 (2.15)

which will greatly simplify our analysis. One can then use the Killing spinor equation and

the two projectors to show that

f2 = κe
1

2
(H+G)

f1 = λe
1

2
(H−G)

where κ and λ are integration constants which give the same form for these bilinears similar

to the ones we found in [18]. It is also notable that another consequence of (2.15) is the

fact that L is again a closed form which we can show, by using (2.5), that

∂µeH = −
α

λ
Lµ.

From the differential equation that L satisfies (B.15) we obtain the constrain

Fλ[µ V λ
ν] = 0

– 3 –



J
H
E
P
0
5
(
2
0
0
7
)
0
7
2

which will allow us to parametrize the field strength F by a single scalar function. Using

the six dimensional Fierz identities and the algebraic equation (2.5) can be used to show

that the two vectors K and L are orthogonal and they have opposite norms

L2 = −K2 = h−2 = f2
1 + f2

2

L · K = 0

and also that

LµFµν = 0.

Following similar arguments that where presented in similar configurations [8, 12, 18] one

can reduce the form of the metric to

ds2 = −
1

h2
(dt + C)2 + h2dy2 + e−G−Hhmndxmdxn + yeGdΩ̂2

3 + ye−Gd (ψ + A)2 ,

m, n = 1, . . . , 4

L = − αdy.

At this point we have set κ = λ = 1 and γ = −α. Where the four dimensional metric hmn

also depends on the coordinate y as a parameter. The three form (2.14) which we show

that can be written as

Ω = e−G−HK ∧ J

provides us with a complex structure J for the four dimensional base space that appears

in the previous form of the metric. The y derivative of the Kahler form is given by a

combination a the field strengths of the vectors C and A

−α

y
∂yJ = d̃C −F

while the y derivative of the vector C is given by

∂yC = −
1

y
J · d̃Z

where the exterior derivative d̃ acts on the coordinates of the four dimensional space.

The four form can be shown that is given by

4f1e
− 1

2
(H−G)F̃(4) = −

2f2
1

f2
1 + f2

2

dG ∧ K ∧ I + f1e
− 1

2
(G+H) L ∧ K ∧ dC −

(

f2
2 + f2

1

)

dC ∧ I

+ λeH−GI ∧ F − e
1

2
(H−G) f

2
1

f2

1

f2
1 + f2

2

L ∧ K ∧ F

and the closure of this four form forces the constrain

F ∧ d
(

e
1

2
(H−G)Y

)

= 0

which can be shown to equivalent to the constrain (2.2).
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The higher dimensional analog of the LLM Laplace equation is not altered in our case.

As in the ungauged case, we find that the connection between the Kahler form and the

scalar

Z =
1

2
tanh G

is given by

y∂y

(

∂yJ

y

)

+ d̃
(

J · d̃Z
)

= 0.

Supersymmetry demands that the volume of the four dimensional satisfies the differ-

ential equation

∂y ln detG = 2
e−G

eG + e−G
∂yG + 2α

n + 2α

y (1 + e2G)
−

2α

y
(n + α)

which is a more general equation than what we had presented in [18]. Apart from the y

derivative of the volume we would also like to consider the derivatives with respect to the

coordinates of the four dimensional base space. For this reason we study the Ricci form of

the four dimensional space. The quantity that will help us calculate the curvature of the

Kahler manifold is the 2-form bilinear

Vµν = εT γµνγ7ε.

This 2-form can be shown to be holomorphic and as in other interesting cases [6, 7] we can

use the differential Killing spinor equation to calculate the curvature of the Kahler base

space. In the end of the calculation we show that the Ricci form is given by (B.68).

The volume that correctly reproduces both equations under consideration is

ln

∣

∣

∣

∣

∣

∂z∂z̄K ∂w∂z̄K

∂z∂w̄K ∂w∂w̄K

∣

∣

∣

∣

∣

= ln

(

−y∂y

(

∂yK

y

)

+ yF ′ (y)

)

+
2α

y
(2α + n) ∂yK − 2Φ

− 2α (n + α) ln y − 2α (2α + n)F (y) (2.16)

where the function F (y) is such that

Z +
1

2
= −y∂y

(

∂yK

y

)

+ yF ′ (y) .

As we will see for the space-times which are asymptotically AdS5 × S5 this function is

irrelevant. and the scalar Φ is introduced through the field strength

F = d̃
(

J · d̃Φ
)

which solves the constrain (B.17).

The scalar Φ can be thought of as being sourced by the constrain

F −
1

f2
1 + f2

2

iLiK ⋆6 F = −2e−2H (n + α)J (2.17)

which, generalizes the constrain n+α = 0 that appears in similar studies [8, 12, 18]. As we

can see from the previous constrain, since both the field strength F and the Kahler form
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J are closed with respect to the four dimensional external differentiation operator d̃ , we

essentially have that

d̃ ⋆4 F = 0

which is compatible with the type IIB field equations.

The two constraints that originate from the ten dimensional Bianchi identities are

simultaneously equivalent to the constrain

F ∧ F = 2 (n + 2α) (n + α) y−4 J ∧ J (2.18)

which ensures that the geometry solves the ten dimensional type IIB equations of motion.

The last thing that needs to be checked is the closure of the two form F̂(2). Using the

duality relation (A.2) we can determine the two form F̂(2) whose components read

F̂tx = −
1

2
e

3

2
(G+H)f2∂xG

F̂ty = −
1

4
∂ye

2(G+H)

F̂yx =
1

4
Cx∂ye

2(G+H) −
1

8
eG+H

(

eG + e−G
)

J x1

x ∂x1z

F̂x1x2
=

1

2
Jx1x2

−
1

4
eH∂yJx1x2

−
1

4
e2G+H∂yJx1x2

−
1

4
e2(G+H)Fx1x2

−
1

4
∂[x1

e2(G+H)Cx2].

Checking the closure of the two form amounts to using the differential constraints that we

have already identified.

To summarize the solution we write all the supergravity fields in terms of the two

scalars Φ and K in complex notation,

ds2
10 = −h−2 (dt + C)2 + h2dy2 +

1

yeG
hmndxmdxn + yeGdΩ̂2

3 + ye−Gd (ψ + A)2

Z =
1

2
tanh G,

h−2 = 2y cosh G

Z = −y∂y

(

∂yK

y

)

,

hmndxmdxn = ∂za∂z̄bK dza dz̄b

C =
1

2ı

(

∂ − ∂̄
)

(

1

y
∂yK + Φ

)

,

A =
1

2ı

(

∂ − ∂̄
)

Φ

where ∂ and ∂̄ are the holomorphic and antiholomorhic exterior derivatives respectively.

keeping in mind that

K = −h−2 (dt + C) ,

L = dy

J = ∂∂̄K,

F = ∂∂̄Φ

– 6 –
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the five form is

F(5) = 2 e2GeH
(

⋆6F̃(4)

)

∧ dΩ̂3 + F̃(4) ∧ (dψ + A)

4F̃(4) = −h2 e−2G dG ∧ K ∧ J + e−G L ∧ K ∧ dC − h−2e−G−H dC ∧ J

+ e−2G J ∧ F − eH−2G L ∧ K ∧ F

in terms of the two scalars the contraints (2.17) and (2.18) take the form

∂∂̄Φ − ⋆4∂∂̄Φ = −
2

y2
(n + α) ∂∂̄K

∂∂̄Φ ∧ ∂∂̄Φ = 2 (n + 2α) (n + α) y−4∂∂̄K ∧ ∂∂̄K.

3. Three examples

In this section we will reduce our general configuration to some known examples. This will

help us illustrate the physical meaning of the U (1) charge n that enters in our analysis.

Ungauged SO (2) (n = −α). The first example that we present will reduce the more

general ansatz (2.1) to the ungauged case we had originally considered in [18]. We take

n = −α and from the constrain (B.71) we see that the field strength of the gauge vector

has to satisfy

F ∧ F = 0.

From our second constrain of the field strength (B.59) we also have that

F = ⋆4F

and because these forms carry only the four dimensional Euclidean indices we are forced

to

F = 0.

Finally, we see that the gauge field is a pure gauge which we can eliminate by shifting ψ. In

this case we see that we recover the case of the ungauged solutions. As one can easily check

the our more general equation (B.69) reduces to the equation we had proposed previously

proposed in [18].

LLM (n = −2α). The class of LLM solutions [12] should be present in our previous case.

However, writing down the correct Kahler potential and making the correct identification

of coordinates looks like a rather non-trivial task. What we would like is to exploit is the

presence of the gauge field.

F ∧ F = 0

but F is non-zero now as we can see from the constraints that it satisfies. We split the

four dimensional space in pairs (x1, x2) and (x3, x4). We now write

F = A3 (x3, x4) dx3 + A4 (x3, x4) dx4

C = C1 (x1, x2, y) dx1 + C2 (x1, x2, y) dx2

J = J (1) + y2J (2)

– 7 –
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and the metric takes the form

ds2 = −
1

h2
(dt + C)2 + h2dy2 +

1

yeG
ds2

1 + yeGdΩ̂2
3 + ye−G

[

ds2
2 +

1

4
d

(

ψ̃ + 2A
)2

]

.

Using equations (B.68) and (B.61) we have that for the two dimensional space spanned by

(x3, x4) the Ricci tensor and the vector field A satisfy

R(2) = 4g(2)

dA = 2J (2).

From the first equation we see that the second two dimensional space is locally a two-sphere

of radius 1
2 for which we may write

J (2) =
1

4
σ1 ∧ σ2

and from the second equation that we had for the vector field we see that

d
(

ψ̃ + 2A
)

= dσ3

where σi are the left invariant one forms on S3. From equation (B.69) we have that

ds2
1 =

(

Z +
1

2

)

[

dx2
1 + dx2

2

]

and as we can see from (B.64) the function Z must satisfy

(

∂2
1 + ∂2

2

)

Z + y∂y

(

∂yZ

y

)

= 0.

Unlike the ungauged case n = −α where even the very symmetric AdS5×S5 looks very non-

trivial, we see that after the inclusion of the U (1) fiber, the whole class of LLM solutions

comes out very naturally.

AdS5× Sasaki-Einstein (n = −3α). In this case we have that

F ∧ F = 4y−4J ∧ J

and we write the metric as

ds2 = −
1

h2
dt2 + h2dy2 + yeGdΩ̂2

3 + ye−G

[

ds2
4

(

xi
)

+ d
(

ψ̃ + A
)2

]

where we have rescaled pulled out a factor y2 from the four dimensional metric. In this

case we set eG = y and

Z =
1

2

1 − y2

1 + y2
.

From the Ricci form of the four dimensional space (B.68) and equation (B.61) we can see

that the four dimensional Kahler manifold becomes Einstein-Kahler

R = 6J .

– 8 –
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On the other hand the Kahler form is related to the field strength F

F = 2J .

The above conditions guarantee that the 5 dimensional spanned by the coordinates

(ψ̃, x1, . . . , x4) is a five dimensional Sasaki-Einstein space. The final form of the metric

is

ds2 = −
(

y2 + 1
)

dt2 +
dy2

y2 + 1
+ y2dΩ̂2

3 + ds2
4

(

xi
)

+ d
(

ψ̃ + A
)2

.

4. Conclusions and summary

We have enlarged our previous SO (4) × SO (2) symmetric ansatz [18] to include a vector

field which gauges the SO (2) symmetry. The feature that persists after the inclusion of

the new field is the four dimensional Kahler structure that we identified. This might not

be very surprising since a six dimensional Kahler structure has been nicely identified in [6]

for the SO (4) symmetric case. In addition to the Kahler potential a new scalar makes its

appearance through the gauge field as someone would expect. The two scalars are coupled

through constraints which makes them dependent.

The analysis we have presented in this paper is in no sense complete and more work

is required. The configurations we have analyzed are all BPS but the constraints that one

needs to solve are non-linear. It would be interesting to show at least the integrability of

the above constraints and give a sense of superposition.

The question of gauge theory dual for the 1/4 and 1/8 [6] BPS configurations of

supergravity is of great interst [20 – 25]. In the simplest case of 1/2 BPS, it was shown

that the states were in 1-1 correspondence to gauge theory operators (throught the fermion

droplet picture). This picture was obtained through a reduction of gauge theory to 1-matrix

model problem [13, 14]. For the present case one would need an analytical understanding

of the large N limit of a multi-matrix model. It is known that for the case of 1/4 BPS

states the model contains 2 complex matrices [26] while for 1/8 BPS states the model is

described by 3 complex matrices. For a study of collective dynamics of such multi-matrix

models see [21].

The configurations we have described are able to describe 1/4 BPS gravitons prop-

agating on AdS5 × S5 which, at this point, we guess that are described by ripples on a

four dimensional ball (for the n = −α case) which should be interpreted as the AdS5 × S5

ground state. With our symmetry being SO (4) × SO (2) we expect that, among other

interesting setups, the configurations we analyzed describe the back reaction of rotating

D3-branes wrapping the S3 of AdS5 with two independet angular momentum components

on S5. In this context it would be interesting to think of those geometries as a back reaction

to Mikhailov’s giant gravitons [27].
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A. Killing spinor equation reduction

We start this appendix by giving the reduction of the spin connection on S3 × S1

ω̂cd = ωcd −
1

2
eH−GFcdA −

1

2
eH−GFcddψ

ω̂dm̂ = −
1

2
e

1

2
(H+G)êm̂µ̂∂d (H + G) dxµ̂

ω̂10d =
1

2
e(H−G)Fdµdxµ +

1

2
e

1

2
(H−G)∂d (H − G) A +

1

2
e

1

2
(H−G)∂d (H − G) dψ

F = dA

where c, d = 1 . . . 6 are the tangent indices of the dimensional space, m̂ = 1 . . . 3 are the

tangent indices of S3.and ωcd is the spin connection of the six dimensional space.

We decompose the gamma matrices ΓM in the following way

Γµ = γµ ⊗ σ̂1 ⊗ I2

Γµ̂ = I8 ⊗ σ̂2 ⊗ σµ̂

Γ10 = γ7 ⊗ σ̂1 ⊗ I2

where γ7 = γ1 . . . γ6 , Γ11 = Γ1 . . . Γ10 = I8 ⊗ σ̂3 ⊗ I2 and the chirality condition for the IIB

spinors gives

Γ11η = η ⇒ σ̂3η = η.

For the spinors we give the decomposition

η = ǫ ⊗

[

1

0

]

⊗ χα = ε ⊗ χα

where

∇̂âχα =
iα

2
σâχα, a = ±1.

For dependence on the coordinates we have

ε
(

xµ, Ω̂3, ψ
)

= e
ı

2
nψε

(

xµ, Ω̂3

)

which gives

ı∂ψε = −
n

2
ε.

For the covariant derivatives we have

∇̂µ = ∇µ −
1

8
eH−G 6 FAµ +

1

4
e

1

2
(H−G)γ7γ

νFνµ +
1

4
e

1

2
(H−G)γ7γ

ν∂ν (H − G) Aµ

∇µ̂ = ∇̂µ̂ −
ı

4
σµ̂σ̂3γ

ν∂ν (G + H)

∇ψ = ∂ψ −
1

8
eH−G 6 F +

1

4
γ7γ

µ∂µ (H − G)
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and for the Dirac matrices we have that

Γµ = γµσ̂1 + e
1

2
(H−G)Aµγ7σ̂1.

The ten dimensional Killing spinor equation reads

∇Mη +
ı

480
ΓM1...M5FM1...M5

ΓMη = 0. (A.1)

For the second term we have

M =
ı

480
ΓM1...M5FM1...M5

=
ı

480

[

10ΓM1M2F̂M1M2
e−

3

2
(G+H)Γâb̂ĉε

âb̂ĉ
+ 5ΓM1M2M3M4Γψe−

1

2
(H−G)F̃M1M2M3M4

]

after using the two duality relations

ΓM1...M5 = −
1

6!
εM1...M11ΓM6...M11

and

F̃M1...M4
= −

1

2
e−2G−HεM1...M6

F̂M5M6

(A.2)

we have

M = −
1

8
γµ1µ2F̂µ1µ2

e−
3

2
(G+H)σ̂2 (1 + Γ11)

= −
1

8
6 F̂ σ̂2 (1 + σ̂3) .

The reduced equation now gives one diferrential and two algebraic constrains for the Killing

spinor
[

∇µ −
1

8
eH−G 6 FAµ +

1

4
e

1

2
(H−G)γ7γ

νWνµ (A.3)

+
1

4
e

1

2
(H−G)γ7γ

ν∂ν (H − G) Aµ − ıNγµ − ıe
1

2
(H−G)Nγ7Aµ

]

ε = 0

[

ıα

2
e−

1

2
(H+G) −

i

4
γλ∂λ (H + G) + N

]

ε = 0 (A.4)

[

ın

2
e−

1

2
(H−G) −

1

8
e

1

2
(H−G) 6 F +

1

4
γ7γ

λ∂λ (H − G) − ıγ7N

]

ε = 0 (A.5)

where

N = −
1

4
6 F̂ e−

3

2
(G+H).

The last equations can be written after linear combinations as
[

∇µ −
ın

2
Aµ +

1

4
e

1

2
(H−G)γ7γ

νFνµ − ıNγµ

]

ε = 0

[

−αe−
1

2
(H+G)γ7 + ıne−

1

2
(H−G) −

1

4
e

1

2
(H+G) 6 F + γ7γ

λ∂λH

]

ε = 0

[

ıαe−
1

2
(H+G) − ne−

1

2
(H−G)γ7 − ıγλ∂λG −

ı

4
e

1

2
(H+G) 6 Fγ7 + 4N

]

ε = 0.

– 11 –



J
H
E
P
0
5
(
2
0
0
7
)
0
7
2

B. Supersymmetry analysis

When looking at Fierz identities involving the above bilinears it will be more convenient

to work with the following equivalent bilinears

Z+ = −f1 − ıf2 = 2ε̄+ε− (B.1)

Z− = f1 − ıf2 = 2ε̄−ε+ (B.2)

l+µ = Lµ + Kµ = 2ε̄+γµε+ (B.3)

l−µ = −Lµ + Kµ = 2ε̄−γµε− (B.4)

q±µνλ = ıε̄±γµνλε± (B.5)

where as usually

ε± =
1

2
(I8 ± γ7) ε (B.6)

γ7ε± = ±ε±. (B.7)

We will also make extensive use of the duality relation in six dimensions between the

gamma matrices

γa1...an =
(−1)[

n

2 ]+1

(6 − n)!
εa1...anbb+1...b6−nγb1...b6−n

γ7 (B.8)

and the Fierz rearrangement for commuting spinors

ψ̄1ψ2ψ̄3ψ4 =
1

8

[

ψ̄1ψ4ψ̄3ψ2 + ψ̄1γ7ψ4ψ̄3γ7ψ2 −
1

2
ψ̄1γµνψ4ψ̄3γ

µνψ2 −
1

2
ψ̄1γµγ7ψ4ψ̄3γ

µνγ7ψ2

]

+
1

8

[

ψ̄1γµψ4ψ̄3γ
µψ2 − ψ̄1γµγ7ψ4ψ̄3γ

µγ7ψ2

]

−
1

96

[

ψ̄1γµνλψ4ψ̄3γ
µνλψ2 − ψ̄1γµνλγ7ψ4ψ̄3γ

µνλγ7ψ2

]

. (B.9)

B.1 Diferrential relations

Taking a covariant derivative of (2.8) and using equation (2.4) we may write

∇µf1 =
ı

4
ε̄ (γµγκλγ7 + γκλγµγ7) εF κλe−

3

2
(G+H) −

1

2
e

1

2
(H−G)ε̄γνεFνµ

=
1

2
⋆ (F ∧ Ω)µ e−

3

2
(G+H) −

1

2
e

1

2
(H−G)KνFνµ (B.10)

= −
1

3!
Fµρστ Ωρστe

1

2
(G−H) −

1

2
e

1

2
(H−G)KνFνµ (B.11)

Following the same procedure for (2.9) we have

∇µf2 = −
1

2
ε̄ (γλgµκ − gµλγκ) εF κλe−

3

2
(G+H)

= −e−
3

2
(G+H)FµλKλ. (B.12)
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For (2.10) we have

∇µKρ = e−
3

2
(G+H)f2Fµρ − e−

3

2
(G+H) 1

4
F κλεµρπτκλY πτ +

1

2
e

1

2
(H−G)f1Fλµ (B.13)

= e−
3

2
(G+H)f2Fµρ +

1

2
e

1

2
(G−H)FµρπτY πτ +

1

2
e

1

2
(H−G)f1Fλµ (B.14)

For (2.11) we have

∇µLρ =
ı

4
F κλe−

3

2
(G+H)ε̄ (γργκλγµ + γµγκλγρ) γ7ε +

1

4
e

1

2
(H−G)ε̄ (γνγρ − γργ

ν) εFνµ

= e−
3

2
(G+H)

[

F λ
µ Yλρ + F λ

ρ Yλµ +
1

2
gµρF

κλYκλ

]

−
1

2
e

1

2
(H−G)V ν

ρ Fνµ (B.15)

where we used the duality (B.8). One more equation for (2.13) is given by

∇γVδǫ = −e−
3

2
(G+H)

[

gγ[ǫ Ω δ]αβFαβ − F β
γ Ωβδǫ + 2Ωαγ[δ Fα

ǫ]

]

+ e
1

2
(H−G)LγFδǫ. (B.16)

From equation (B.13) we conclude that

∇(µ Kν) = 0

which suggests that Kµ is a Killing vector.

As we will later see in (B.35), a consequence of (2.15), the 1-form Lµ is the derivative

of a scalar and so we have from (B.15) the constraint

dL = 0 ⇒ Fλ[µ V λ
ν] = 0. (B.17)

We now take a derivative of (2.14) giving us

∇κΩµνλ =
1

4
e−

3

2
(G+H)F πρε̄ (γµνλγπργκ − γκγπργµνλ) ε +

3

2
e

1

2
(H−G)Y[µν Fλ]κ.

After antisymmetrization we have that

dΩκλµν = 4f1e
− 1

2
(H−G)F̃κλµν + 6 e

1

2
(H−G)Y[µν Fλκ]. (B.18)

For its dual we have the equation

∇κ (⋆Ω)µνλ = −
1

4
e−

3

2
(G+H)F πρε̄ (γµνλγπργκ + γκγπργµνλ) γ7ε −

ı

2
e

1

2
(H−G)ε̄γ ρ

µνλ εFρκ.

Antisymmetrizing the last equation in κ, µ, ν, λ we obtain

(d ⋆ Ω)κµνλ = 2ε̄ (γµνλκN + Nγκµνλ) γ7ε − e
1

2
(H−G)Fπ

[κ εµνλ]παβY αβ (B.19)

which as we see later promotes a 4-dimensional submanifold to a Kahler manifold.
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Algebraic relations. Using ψ̄1 = ε̄+γµ, ψ2 = ε+, ψ̄3 = ε̄+ and ψ4 = γµε+ in (B.9) we

obtain

l+µ l+µ = 0. (B.20)

In a similar manner one can obtain the relation

l−µ l−µ = 0. (B.21)

Using ψ̄1 = ε̄+, ψ2 = ε−, ψ̄3 = ε̄− and ψ4 = ε+ we obtain

Z+Z− =
1

4
l+µ l−µ +

1

48
q+πρσq−πρσ. (B.22)

Choosing ψ̄1 = ε̄+γµ, ψ2 = ε+, ψ̄3 = ıε̄+ and ψ4 = γµνλε+we have

l+µq+
µνλ = −l+µq+

µνλ ⇒ il+q+ = 0. (B.23)

Using the selfduality

⋆q+ = q+

we have also that

l+ ∧ q+ = 0.

In a very similar way one can prove that

il−q− = 0

and from the anti-selfduality

⋆q− = −q−

follows that

l− ∧ q− = 0.

The above two relations lead us to the conclusion that in a frame where the metric can be

written as

ds2 = e+e− + δabe
aeb, a, b = 1 . . . 4 (B.24)

we must have

l+ = e+

l− = e−

and for the three forms

q+ = l+ ∧ I (B.25)

q− = l− ∧ J (B.26)

where

I =
1

2
Iabe

a ∧ eb (B.27)

J =
1

2
Jabe

a ∧ eb. (B.28)
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From the dualities of q±we conclude that I and J are anti-selfdual with respect to the four

dimensional space. From (B.25) and (B.26) we conclude that

q+πρσq−πρσ = 3
[

(

l+ · l−
)

(

IabJab

)

+ 2l+ml−nInkJ
k
m

]

.

= 3
(

l+ · l−
)

(

IabJab

)

. (B.29)

We are now considering (A.4), (A.5) and their conjugates
[

ıα

2
e−

1

2
(H+G) −

i

4
γλ∂λ (H + G) + N

]

ε = 0

ε̄
[

−
ıα

2
e−

1

2
(H+G) −

ı

4
γλ∂λ (G + H) − N

]

= 0 (B.30)
[

ın

2
e−

1

2
(H−G) +

1

4
γ7γ

λ∂λ (H − G) −
1

8
e

1

2
(H−G) 6 F − ıγ7N

]

ε = 0

ε̄

[

−
ın

2
e−

1

2
(H−G) +

1

4
γλγ7∂λ (H − G) +

1

8
e

1

2
(H−G) 6 F + ıγ7N

]

= 0. (B.31)

Vector identities. At this point it is useful to see that

[γµ, N ] = −
1

2
e−

3

2
(G+H)F λ

µ γλ.

Multiplying (A.4) by ε̄γµ, (B.30) by γµε and adding the two equations we have

ε̄
[ ı

4

{

γµ, γλ
}

∂λ (H + G) + [γµ, N ]
]

ε = 0 ⇒

f2∂µ (H + G) − e−
3

2
(G+H)F λ

µ Kλ = 0 (B.32)

which in combination with (B.12) gives the equation

∂µf2 =
1

2
f2∂µ (H + G) ⇒ (B.33)

f2 = κe
1

2
(H+G).

We now turn to (A.5) and (B.31) , we multiply the first by ε̄γµ, the second one by γµε we

add them and in combination with (2.15) yields

ε̄

[

−
1

4
γ7

{

γµ, γλ
}

∂λ (H − G) − ı {γµ, N} γ7

]

ε = 0

−f1∂µ (H − G) + ⋆ (F ∧ Ω)µ e−
3

2
(G+H) = 0

which in combination with (B.10) yields

∂µf1 =
1

2
f1∂µ (H − G) ⇒ (B.34)

f1 = λe
1

2
(H−G).

We now consider (A.4) and (B.30) again but this time we multiply by −ıε̄γµγ7 and

−iγµγ7ε respectively and add them. The result of the operation reads

αLµe−
1

2
(G+H) +

1

2
f1∂µ (G + H) +

1

2
⋆ (Ω ∧ F )µ e−

3

2
(G+H) = 0.
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Using (B.10) and B.34 we obtain the relation

∂µeH = −
α

λ
Lµ. (B.35)

Multiplying A.5 and B.31 by ıε̄γµγ7 respectively ıγµγ7ε and adding the resulting equations

we obtain

−ne−
1

2
(H−G)Lµ −

1

4
e

1

2
(H−G) ⋆ ΩµλνF

λν +
1

2
f2∂µ (H − G) −

1

2
e−

3

2
(G+H)F λ

µ Kλ = 0.

We now use B.12 and B.33 to obtain

∂µeH =
n

κ
Lµ +

1

4
e

1

2
(H−G) ⋆ ΩµλνF

λν (B.36)

which in combination with (B.35) gives the constraint

⋆ΩµλνF
λν = −4e−H+G

(n

κ
+

α

λ

)

Lµ.

From equation (2.5) one can also derive the constraints

−αe−
1

2
(G+H)Kµ + V λ

µ ∂λH −
1

2
e

1

2
(H−G)FµλLλ = 0

ne−
1

2
(H−G)Kµ + Y λ

µ ∂λH +
1

4
e

1

2
(H−G)ΩµλνF

λν = 0

Rank three identities. We now multiply (2.5) by ε̄γµνκ, ε̄γµνκγ7 and take the real and

imaginary part separately

αe−
1

2
(G+H)Ωµνκ +

1

2
ǫµνκραβY αβ∂ρH +

3

2
e

1

2
(H−G)F β

[κ ⋆ Ωµν]β = 0

ne−
1

2
(H−G) ⋆ Ωµνκ + 3∂[κ HVµν] +

3

2
e

1

2
(H−G)L[κFµν] +

1

4
e

1

2
(H−G)ǫκµναβγKγFαβ = 0

(B.37)

αe−
1

2
(G+H) ⋆ Ωµνκ + 3∂[κ HYµν] +

3

2
e

1

2
(H−G)F β

[κ Ωµν]β = 0

(B.38)

ne−
1

2
(H−G)Ωµνκ +

1

2
ǫµνκραβV αβ∂ρH +

3

2
e

1

2
(G+H)K[κFµν] +

1

4
e

1

2
(H−G)ǫκµναβγLγFαβ = 0

(B.39)

Kahler Structure. At this point we would like to recognize a Kahler structure in the

construction at hand. For this reason we consider (B.9) with ψ̄1 = ε̄±γµνγα, ψ2 = ε±,

ψ̄3 = ε̄± and ψ4 = γαγγδε± which gives

4 ε̄±γµνγαε±ε̄±γαγγδε± = ε̄±γµνγαγργαγγδε±ε̄±γρε± −
1

12
ε̄±γµνγαγρστγαγγδε±ε̄±γρστε±

= −4ε̄±γµνγργ
γδε±ε̄±γρε±.
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Using the identities

γµνγα = gανγµ − gαµγν + γαµν (B.40)

γαγγδ = gαγγδ − gαδγγ + γαγδ (B.41)

γµνγαγγδ = γαγδµν − 6gαπgγρgδσδ[πρ
µν γ σ] + 4gαπgµρgνσδ

π[ρ
γδ γ σ]

+ 6gαπgγρgδσδ
[π
[ν γ

ρσ]
µ] + 2gα[γ γ δ]µν

γαγρστγα = 0

we draw the conclusion

Ia
bI

b
c = −δa

c (B.42)

Ja
bJ

b
c = −δa

c .

Using (B.20), (B.21), (B.42), (B.22), (B.29) and the definitions (B.1)-(B.4) we have that

L2 = −K2 = f2
1 + f2

2 (B.43)

K · L = 0. (B.44)

We now look at the Fierz identity involving ψ̄1 = ε̄+γγδγµ, ψ2 = ε+, ψ̄3 = ε̄− and

ψ4 = γνγγδε− which gives after antisymmetrization in µ and ν

4 ε̄+γγδ
[µ ε+ ε̄−γν]γδε− = −12ε̄+γµνε− ε̄−ε+ + 12ε̄+ε− ε̄−γµνε+

− 2ε̄+γµνρσε− ε̄−γρσε+, (B.45)

considering now the Fierz identity for ψ̄1 = ε̄+γν , ψ2 = ε+, ψ̄3 = ε̄− and ψ4 = γµε−we

have

ε̄+γµνρσε− ε̄−γρσε+,= 8ε̄+γ[ν ε+ε̄−γµ]ε− + 2ε̄+γµνε− ε̄−ε+ − 2ε̄+ε− ε̄−γµνε+.

Finally (B.45) takes the form

ε̄+γγδ
[µ ε+ ε̄−γν]γδε− = −4ε̄+γµνε− ε̄−ε+ + 4ε̄+ε− ε̄−γµνε+ − 4ε̄+γ[ν ε+ε̄−γµ]ε−. (B.46)

It will be also useful to consider the Fierz identities with the choice ψ̄1 = ε̄−γµ, ψ2 = ε−,

ψ̄3 = ε̄− and ψ4 = γµγνε+ which gives the relation

ε̄−γµε−ε̄−γµγνε+ = 0 ⇒

ε̄−γµε−ε̄−γµνε+ = −ε̄−γνε−ε̄−ε+. (B.47)

In a similar way one can derive

ε̄+γµε+ε̄+γµνε− = −ε̄+γνε+ε̄+ε−. (B.48)

Contracting (B.39) with KµLν and using (B.35), (B.44) and (2.15) we obtain

LµFµν = 0. (B.49)
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Contracting (B.39) with Lνwe obtain the equation

nΩµλνL
ν = 0

which after combining with (B.36) gives

n
(

il+q− − il−q+
)

= 0 (B.50)

where we used

il±q± = 0.

From (B.50), (B.25) and (B.26) we conclude that

n (I − J) = 0.

From now on we assume that n 6= 0 and we conclude that

I = J.

Using equations (A.4), (A.5), (B.30) and (B.31) one can show that

ε̄ (γµνλκN + Nγκµνλ) γ7ε =
1

2
(⋆Ω ∧ dG)κµνλ −

1

2
e

1

2
(H−G)Fπ

[κ εµνλ]παβY αβ.

Combining the above equation with (B.19) we have that

d ⋆ Ω = ⋆Ω ∧ dG − 2e
1

2
(H−G)Fπ

[κ εµνλ]παβY αβ. (B.51)

One can easily check that because of (2.15), (B.49) the second term vanishes. Equa-

tion (B.51) show us then that for the form

U = eG ⋆ Ω ⇒

dU = eG (dG ∧ ⋆Ω + d ⋆ Ω)

= eG (dG ∧ ⋆Ω + ⋆Ω ∧ dG) = 0.

We know that

U = eGL ∧ I

and since L is closed we have that

L ∧ d
(

eGI
)

= 0. (B.52)

Rescaling the vielbein in (B.24) as

ea
µ = e−

1

2
G− 1

2
H ẽa

µ

we define the metric

hµν = δabẽ
a
µẽb

ν (B.53)

and the two-form

J = eG+HI. (B.54)
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At this point we would like to fix our gauge so that

e+ = X (dt + Cmdxm) + Bdy

e− = −X (dt + Cmdxm) + Bdy

K = −Xdt − XC

L = γdy

and from equations (B.43) and (B.44) we draw the conclusion that

X = B−1 = h−2 = f2
1 + f2

2 .

At this point the ten dimensional metric has the form

ds2 = −
1

h2
(dt + C)2+γ2h2dy2+e−G−Hhmndxmdxn−

γα

λ
yeGdΩ̂2

3 −
γα

λ
ye−Gd (ψ + A)2 ,

m = 1, . . . , 4 (B.55)

where we used (B.36) to fix

eH = −
γα

λ
y.

We also know that the Euclidean space with metric

ds2
4 = hmndxmdxn

is Kahler with complex structure defined by (B.54). In order to prove that J is closed we

split the exterior derivative as

d = d̃ + dy + dt

where d̃ only takes into account differentiation with respect to the coordinates xm. Then

from (B.52)

L ∧ dJ = 0 ⇒

d̃J = 0 (B.56)

and from (B.42) we have

J m
pJ

p
n = −δm

n

where in this equation we raise and lower indices using the metric (B.53).

From equation (B.46) we derive the constrain

f1V + f2Y = L ∧ K. (B.57)

And from equations (B.46), (B.47) and (B.48) we can derive the equations

iLV = f1K

iKV = −f1L

iLY = f2K

iKY = −f2L.
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We now use these relations and contract equations (B.37) and (B.38) with Lκ to derive

V =
λn

α
e

1

2
(H+G)I +

λ

2α
eHe

1

2
(H−G)

(

F −
1

f2
1 + f2

2

iLiK ⋆6 F

)

+
f1

f2
1 + f2

2

L ∧ K (B.58)

Y =λe
1

2
(H−G)I +

f2

f2
1 + f2

2

L ∧ K.

In order to satisfy (B.57) we find that the following relations should be satisfied

F −
1

f2
1 + f2

2

iLiK ⋆6 F = −2eG−H
(

n +
κα

λ

)

I. (B.59)

At this point we may use (B.58) and (B.59) to express

I = −
1

κ
e−

1

2
(H+G)V +

1

κ

f1e
− 1

2
(G+H)

f2
1 + f2

2

L ∧ K. (B.60)

One can calculate the derivative of V using equation (2.4) and (2.6),

dVλµν = e
1

2
(H−G)L ∧ F −

1

2

κα

λ
e−

1

2
(H−G)L ∧ I −

1

2
V ∧ dG ⇒

d
(

e
1

2
GV

)

= e
1

2
HL ∧ F −

1

2

κα

λ
e−

1

2
(H−2G)L ∧ I.

The above equation in combination with (B.60) and the fact that

dK =
f2
2 − f2

1

f2
2 + f2

1

dG ∧ K + dH ∧ K −
(

f2
2 + f2

1

)

dC

leads to the differential

d
(

eH+GI
)

= eHL ∧

(

λ

κ
dC −

1

κ
F

)

dJ = eHL ∧

(

λ

κ
dC −

1

κ
F

)

We split the exterior derivative as

d = d̃ + dy + dt

where d̃ only takes into account differentiation with respect to the coordinates xm. From

the above we recover the fact that J is closed and we find also an equation for the y

dependence of this function

∂yJ = eH γ

κ

(

λ d̃C −F
)

. (B.61)

Eliminating the field strength. We can use equation (B.18) to solve for the four form

4f1e
− 1

2
(H−G)F̃(4) = dΩ − e

1

2
(H−G)Y ∧ F

= −
2f2

1

f2
1 + f2

2

dG ∧ K ∧ I + f1e
− 1

2
(G+H) L ∧ K ∧ dC −

(

f2
2 + f2

1

)

dC ∧ I

+ λeH−GI ∧ F − e
1

2
(H−G) f

2
1

f2

1

f2
1 + f2

2

L ∧ K ∧ F
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From the Bianchi identity we have the constrain that W has to satisfy

F ∧ d
(

e
1

2
(H−G)Y

)

= 0. (B.62)

Contracting equation (B.10) with Lµ we obtain the equation

Lµ∂µf2
1 = −

1

4
dΩµρστ LµKρIστ

1

4
e

1

2
(G+H)

(

f2
1 + f2

2

)

J ij d̃Cij = γf1∂yG + γf1e
−H∂ye

H − e−
1

2
(H−G) f1

f2

(

n +
κα

λ

)

where we used the constrain (B.59) and in the last line the raising of indices is done with

the Kahler metric. Contracting equation (B.61) with J we obtain

J ij∂yJij =
γλ

κ
eHJ ijdCij −

γ

κ
eHJ ijFij

where the contraction is done using the rescaled metric (B.53). At this point we find it

convenient to set

κ = λ = 1

γ2 = 1

γα = −1 ⇒ eH = y.

Continuing our analysis we have that

∂y ln detG = 2
e−G

eG + e−G
∂yG + 2γ

γ − n − α

y (1 + e2G)
+

2γ

y
(n + α)

where

G =

∣

∣

∣

∣

∣

∂z∂z̄K ∂w∂z̄K

∂z∂w̄K ∂w∂w̄K

∣

∣

∣

∣

∣

and K represents the Kahler potential for the four dimensional base manifold.

Defining the field

Z =
1

2
tanh G

the previous equations may be written as

∂y ln detG = ∂y ln

(

Z +
1

2

)

+
2γ

y

(

−Z +
1

2

)

(γ − n − α) +
2γ

y
(n + α) . (B.63)

We are now turning our attention to the component

Ftx =
e2G+H

4!
ǫ πρστ
tx Fπρστ

= −
1

4

e
3

2
(G+H)

f1

(

f2
1 + f2

2

)2
∂yCx1I x1

x .
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Using equation (B.12) we have the constrain

I x1

x ∂yCx1 = −
2f1f2

(

f2
1 + f2

2

)2 ∂xG

∂yCx1 =
1

y
I x1

x ∂x1Z.

The consistency condition d2C = 0 leads to the following expression between the scalar Z

and the Kahler form J

y∂y

(

∂yJ

y

)

+ d̃
(

J · d̃Z
)

= 0. (B.64)

The Ricci form of the Kahler base space. We would like to construct the holomor-

phic 2-form B for the 4 dimensional Kahler base space such that

B ∧ B̄ = J ∧ J .

For this reason we consider the bilinear

Vµν = εT γµνγ7ε.

Our convention for the gamma matrices are such that

γ⋆
µ = γ0γµγ0

γT
µ = −γµ.

Before we move on with our study we note the projection condition that the spinor has to

satisfy as a result of the Fierz identities

γ0γ7γȳε = αε. (B.65)

Fierzing for ψ4 = −γ0γκλγ7γ0ε
⋆, ψ2 = ε, ψ3 = γ0ε and ψ1 = −γ7γµνγ0ε

⋆ we find that

V ∧ V̄ = e−2(H+G)
(

f2
1 + f2

2

)

J ∧ J .

We consider one more time the Fierz identity for ψ4 = −γ0γµνγ7γ0ε
⋆, ψ2 = ε, ψ3 = γ0ε

and ψ1 = −γπρσε with which we may prove that

iKΩ ∧ V = e−G−HJ ∧ V = 0

which proves that V is holomorphic. At this point we note that we used (B.65) to show

that

iKV =
√

f2
1 + f2

2 εT γνγ0γ7ε = α
√

f2
1 + f2

2 εT γνγȳε = 0

as a consequence of the antisymmetry of the antisymmetry of the gamma matrices. We

may also use (A.4) to show that

εT ε = 0.
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From the above analysis we see that

V = e−(H+G)
√

f2
1 + f2

2 B. (B.66)

We may now use (2.4) to show that

dVρµν = inA ∧ Vρµν −
3

2
e

1

2
(H−G)εT γ λ

[µν εFλρ] − ıεT (γρµνN − Nγρµν) γ7ε

= inA ∧ Vρµν −
3

2
e

1

2
(H−G)εT γ λ

[µν εFλρ]−αe−
1

2
(H+G)εT γρµνγ7ε−

1

2
V ∧ d (H+G)ρµν .

We are mostly interested in the case where the indices ρ, µ, ν belong to the four dimensional

base space. For this reason one can write

dVrmn = inA ∧ Vrmn −
3

2
e

1

2
(H−G)

√

f2
1 + f2

2 C[m εT γ0γ
l

n εF lr]

− αe−
1

2
(H+G)

√

f2
1 + f2

2C[r εT γ0γmn]γ7ε −
1

2
V ∧ d (H + G)rmn . (B.67)

Where we used the fact that because of (B.65)

ε̄γr̄m̄n̄ε = 0.

There are three useful relations that we can derive from the projector (2.5)

−ıne−
1

2
(H−G)Vmn −

1

2
e

1

2
(H−G)V[maF

a
n] − εT γ l

mn ε ∂lH = 0

αe−
1

2
(H+G)εT γmnlγ7ε − ıne−

1

2
(H−G)εT γmnlε −

3

2
e

1

2
(H−G)εT γ[mnaεF

a
l] = 0

αe−
1

2
(H+G)Vmn + εT γmnlγ7ε ∂lH = 0.

At this points it is useful to note that one can easily prove that F has to be a (1, 1) form

and because V is a holomorphic form we may write

V[maF
a
n] =

1

2
ıIabFab Vmn = −2ıeG−H (n + α) Vmn.

From the first equation we have that

e−
1

2
(H+G)

√

f2
1 + f2

2 εT γ0γmnγ7ε = ıαVmn.

Using the second and third lines we may write

3

2
e

1

2
(H−G)

√

f2
1 + f2

2 C[m εT γ0γ
l

n εF lr] = ı (n + α) C[mVmn].

Substituting the above two equations in (B.67) we obtain

d̃V = ı
[

nA − (2α + n) C −
ı

2
d̃G

]

∧ V.

We may now use (B.66) to calculate

d̃B =

[

ınA − ı (2α + n)C +
1

2
d̃ ln

(

Z +
1

2

)]

∧ B.
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From the above we have that the Ricci form of the Kahler manifold is given by

R = −nF + (2α + n) d̃C +
1

2
d

(

J · d ln

(

Z +
1

2

))

= 2αF −
α

y
(2α + n) ∂yJ +

1

2
d

(

J · d ln

(

Z +
1

2

))

(B.68)

which is compatible with equation (B.63).

We may now use the constrain (B.17) to write

F = d̃
(

J · d̃Φ
)

.

Finally from (B.63) and (B.68) we have that

ln

∣

∣

∣

∣

∣

∂z∂z̄K ∂w∂z̄K

∂z∂w̄K ∂w∂w̄K

∣

∣

∣

∣

∣

= ln

(

−y∂y

(

∂yK

y

)

+ yF ′ (y)

)

+
2α

y
(2α + n) ∂yK − 2Φ

− 2α (n + α) ln y − 2α (2α + n)F (y) (B.69)

where the scalars need to satisfy the two additional constraints

∂∂̄

[

Z + y∂y

(

∂yK

y

)]

= 0

∂∂̄Φ − ⋆4∂∂̄Φ = −
2

y2
(n + α) ∂∂̄K

and the function F (y) is such that

Z +
1

2
= −y∂y

(

∂yK

y

)

+ yF ′ (y) .

We also have to satisfy (2.2) and (B.62) which come from the Bianchi identity of the ten

dimensional five form field. We can use the constrain (B.59) to show that

I ∧ F = − (n + α) eG−HI ∧ I.

We can easily check that the constrains (2.2) and (B.62) are simultaneously solved when

e−2H (n + α) ∂y ln

(

Z +
1

2

)

J ∧ J − e−H (n + α) ∂y

(

1

y2
J ∧ J

)

(B.70)

−αF ∧ F + γ

(

1

2
− Z

)

F ∧ F = 0.

Comparing with equation (B.63) we see that we need to have

F ∧ F = 2 (n + 2α) (n + α) y−4 J ∧ J . (B.71)
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