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1. Introduction

Supersymmetry provides us with a powerful tool in obtaining or at least describing solutions
of supergravity theories. Using the G-structure analysis, originally developed in [l]-[], one
is able to write down the constraints that the bosonic fields need to satisfy in order for the
background they create to be supersymmetric. In general the constraints are general and
illuminating but the method is more fruitful when one makes a sensible reduction based on
symmetry grounds. The method has been applied to several interesting configurations [ff-
[1] and interesting results were obtained.

One of the most interesting cases was presented in [ where the authors, among other
results, demonstrated a one to one mapping between 1/2 BPS states in minimal type IIB
supergravity and states in A/ = 4 SYM preserving the same amount of supersymmetry.
The procedure exploits the fact that on both sides the states have the same moduli space
which is parametrized by the phase space of N non-relativistic massless fermions in a simple
harmonic potential. The field theory study was carried out in [IJ] and [[[4]. The symplectic
form of the moduli space variables was later computed [, L] and was shown to agree
with the symplectic form of the matrix model relevant to the field theory states [[[7].

In this paper we present an obvious extension of our previous effort [L§] in generalizing
the analysis of [[J] to bosonic states preserving only SO (4) x SO (2) . The new element that
we are concerned with is the vector field that can be added to gauge the original SO (2).
Having a non-zero field strength allows us to have more general U (1) spinor charge, which
is not constrained by the SO (4) chirality of the Killing spinor. As in the ungauged case we
are able to demonstrate a four dimensional Kahler structure. In addition we are also able
to show that the gauge vector can be parametrized by a single scalar function. We finally



show that the supersymmetry constraints give us a Monge-Ampere type of equation along
with a non-linear constrain. The Bianchi identities that we want the five form to satisfy
give us an additional constrain.

The paper is structured in three sections. In the first section we present our ansatz and
we also show the technical highlights of the supersymmetry analysis. In the second section
we embed known supersymmetric solutions in our general ansatz where the significance of
the U (1) spinor charge becomes more transparent. In the last section we present a summary
and conclusions. We also include an appendix where we give the technical details of the
supersymmetry analysis for the interested reader.

2. The SO (4) x SO (2) symmetric ansatz and the SUSY analysis

In this section we will briefly describe the main steps of the supersymmetry analysis.
Following the LLM analysis [[J] we first reduce the ten dimensional theory by imposing
SO (4) x SO (2) symmetry on the fields of minimal type IIB supergravity, namely the
metric gyry and the self-dual five form field strength Far, ar, a0, 05 Our starting point is
the ansatz

ds® = g, datde” + TG a02 + e1=C (dy 4 A)?
F(5) :F(Q) /\ng+F(4)/\(d’l/J+A). (2.1)

Where the Greek indices p,v =1...6.

In general, the constraints obtained by the G-structure analysis don’t have to nece-
serily satisfy the field equations of type IIB supergravity. The check that guarantees the
compatibility of the configuration with the type IIB field equations is the Bianchi identities
that the five form should satisfy [[L]. This argument is based on the integrability of the
Killing spinor equation. For our case this means that the various form field strengths that
come from the reduction of the five form have to satisfy

A ~

F2 =2 62G€H *6 F4

and the Bianchi identity for the five form gives

dF(3) =0

The problem that we would like to confront is to identify all the constraints imposed
on the previously bosonic fields so that the Killing spinor equation
7

480FM1"'M5FM1___M5FM77 =0. (2.3)

Dymn=Vun+

will admit at least one non-trivial solution. After reducing on S® x S', as we describe

in appendix A we are left with a six dimensional spinor ¢, a differential equation in six



dimensions and two algebraic ones coming from the reduction on S and S* respectively
mn 1 1y N |
{Vu = Ayt 72Dy By Ny e =0 (24)
) _
[—aeé(HJ“G)w +ane2H=G) _ Ze%(H+G) F 4y OH|e=0 (2.5)
[zae_%(hH'G) — ne_%(H_G)w — 1 0\G — %e%(hH_G) Fryr+ AN e=0 (2.6)

1
N=— frem2(GHH) (2.7)

where n is the U (1) spinor charge and « is the SO (4) chirality.
At this point we introduce the spinor bilinears that one can construct from the six
dimensional Killing spinor

fr=¢ve (2:8)
f2 =€ (2.9)
K, =éye (2.10)
Ly = &yurre (2.11)
Y\ = 1©Eyu7€ (2.12)
Viw = e (2.13)
Quux = 18V wE. (2.14)

As we show in appendix B one can prove that
Vi =0

which suggests that K, is a Killing vector for the six dimensional metric. At this point we
impose the condition
K{FL,, =0 (2.15)

which will greatly simplify our analysis. One can then use the Killing spinor equation and
the two projectors to show that

f2 — IQG%(HJFG)
fi = AezH1=6)
where x and A are integration constants which give the same form for these bilinears similar

to the ones we found in [[§. It is also notable that another consequence of (R.I7) is the
fact that L is again a closed form which we can show, by using (R.5), that

From the differential equation that L satisfies (B.1§) we obtain the constrain

Fa V=0



which will allow us to parametrize the field strength F by a single scalar function. Using
the six dimensional Fierz identities and the algebraic equation (R.5) can be used to show
that the two vectors K and L are orthogonal and they have opposite norms

LP=-K*=h7?=f{+f3

L-K=0

and also that
LFF,, =0.

Following similar arguments that where presented in similar configurations [§, [[2, [[§ one
can reduce the form of the metric to

1 .
ds® = — o (dt + O)? + h2dy® 4+ e~ Hh, de™dz" + ye©dO2 + ye=Cd (v + A)?
mn=1,...,4
L=—ady.
At this point we have set Kk = A = 1 and v = —a. Where the four dimensional metric Ay,

also depends on the coordinate y as a parameter. The three form (R.14) which we show
that can be written as
Q= TKANT

provides us with a complex structure J for the four dimensional base space that appears
in the previous form of the metric. The y derivative of the Kahler form is given by a
combination a the field strengths of the vectors C' and A

Y
while the y derivative of the vector C is given by

1 ~

where the exterior derivative d acts on the coordinates of the four dimensional space.
The four form can be shown that is given by

2/

4f1e_%(H_G)F(4) =72 AGAK AT+ fre 3G LAK AdC — (3 + f2) dC AT
1 2
PG\ F — ch-c) T L LAKAF
f2 f1 +f2

and the closure of this four form forces the constrain
FAd <e%(H_G)Y) =0

which can be shown to equivalent to the constrain (R.3).



The higher dimensional analog of the LLM Laplace equation is not altered in our case.
As in the ungauged case, we find that the connection between the Kahler form and the
scalar 1
Z = 3 tanh G

is given by
P . ~
Y, <—y‘7> +d <j : dZ) ~0.
Y

Supersymmetry demands that the volume of the four dimensional satisfies the differ-

ential equation
9. 1nd _ 9 e ¢ 5.G 42 n+ 2a 2a
yIndet G =270+ 20 ey =7 (e

which is a more general equation than what we had presented in [[§. Apart from the y
derivative of the volume we would also like to consider the derivatives with respect to the
coordinates of the four dimensional base space. For this reason we study the Ricci form of
the four dimensional space. The quantity that will help us calculate the curvature of the
Kahler manifold is the 2-form bilinear

Viw = aT'yW*WE.

This 2-form can be shown to be holomorphic and as in other interesting cases [, [i] we can
use the differential Killing spinor equation to calculate the curvature of the Kahler base
space. In the end of the calculation we show that the Ricci form is given by (B.69).

The volume that correctly reproduces both equations under consideration is

0,0:K 0,0:K
0,05 K 0,0p K

In

‘ =In <—y6y <8Z/7K> +yF’ (y)) + 2?06 (2a+n) 0y K — 29
—2a(n+a)lny —2a (2a+n) F (y) (2.16)

where the function F' (y) is such that
1 Oy K
Z + 3= —y0y <y7> +yF (y).

As we will see for the space-times which are asymptotically AdSs x S° this function is
irrelevant. and the scalar ® is introduced through the field strength

F=d(7-do)
which solves the constrain (B.17).
The scalar ® can be thought of as being sourced by the constrain
1
F— ———irigx¢ F = —2¢ 2 (n+a) T (2.17)
ff+ 13

which, generalizes the constrain n+a = 0 that appears in similar studies [§, [3, [[§]. As we
can see from the previous constrain, since both the field strength F and the Kahler form



J are closed with respect to the four dimensional external differentiation operator d , we

essentially have that

d~*4‘7::0

which is compatible with the type IIB field equations.
The two constraints that originate from the ten dimensional Bianchi identities are
simultaneously equivalent to the constrain

FAF=2(n+2a)(n+a)y *TANT (2.18)

which ensures that the geometry solves the ten dimensional type IIB equations of motion.
The last thing that needs to be checked is the closure of the two form F(Q). Using the
duality relation (A.9) we can determine the two form F(g) whose components read

N 1
Frw = —§€%(G+H’faama

. 1
Fty - — Zay62(G+H)

A 1 1
Fym _ ZcmayBQ(G+H) _ geGJrI{ (GG + e*G) jx:maxlz
- 1

1 1 1 1
jxlxg - _eHaijle o —€2G+Hayj$1$2 - —62(G+H)f$1$2 - _a[x 62(G+H)C

1 x2]*

E = _
nrz g 4 4 4 4

Checking the closure of the two form amounts to using the differential constraints that we
have already identified.
To summarize the solution we write all the supergravity fields in terms of the two

scalars ® and K in complex notation,
1 A
ds?y = —h72(dt + C)* + h2dy* + @ Bmnda™dz" 4 yeCdO2 + ye=%d (1 + A)?

Z = %tanh G,
h™2 =2y cosh G

7=y, (%5),

Bmndz™dz" = 0,.0 K dz® dz°
1 ~ (1
1 _
A= (0-0) @

where 0 and 0 are the holomorphic and antiholomorhic exterior derivatives respectively.
keeping in mind that

K=—-h"?(dt+C),

L=dy
J = 00K,
F = 900d



the five form is
F(5) = 226 H <*6F(4)> A ng + F(4) A (dy + A)

AF gy = -1 e dGANKNT +e “LAKNdC —h?e " Hdong
+e X TNF -T2 LAKANF

in terms of the two scalars the contraints (P.17) and (2.1§) take the form
_ _ 9 _
00P — x4,00® = —— (n + a) 0K
)

DOD N 0P = 2 (n + 2a) (n + a) y 100K A DOK.

3. Three examples

In this section we will reduce our general configuration to some known examples. This will
help us illustrate the physical meaning of the U (1) charge n that enters in our analysis.

Ungauged SO (2) (n = —«). The first example that we present will reduce the more
general ansatz (P.1) to the ungauged case we had originally considered in [I§]. We take
n = —a and from the constrain (B.71)) we see that the field strength of the gauge vector
has to satisfy

FANF=N0.

From our second constrain of the field strength (B.59) we also have that
F = *4f

and because these forms carry only the four dimensional Euclidean indices we are forced
to
F=0.

Finally, we see that the gauge field is a pure gauge which we can eliminate by shifting . In
this case we see that we recover the case of the ungauged solutions. As one can easily check

the our more general equation (B.69) reduces to the equation we had proposed previously

proposed in [[Lg].

LLM (n = —2a). The class of LLM solutions [[[J] should be present in our previous case.
However, writing down the correct Kahler potential and making the correct identification
of coordinates looks like a rather non-trivial task. What we would like is to exploit is the
presence of the gauge field.

FAF=0

but F is non-zero now as we can see from the constraints that it satisfies. We split the
four dimensional space in pairs (x1,z2) and (z3,z4). We now write

F = Az (w3, 1) da® + Ay (w3, 24) da®
( 2

C = C1 (21, 72,y) dz* + Oy (21,72, y) dx
J =D+ g%



and the metric takes the form
1 1 N 1 N 2
2 2 2,92 2 G 132 -G 2
A5 =~ (At + O)F 4 Wdy? & st +yeCd0} + ye [d32+1d<w+2A) ] .

Using equations (B.6§) and (B.61)) we have that for the two dimensional space spanned by
(z3,x4) the Ricci tensor and the vector field A satisfy

R®) = 44®
dA =273,
From the first equation we see that the second two dimensional space is locally a two-sphere

of radius % for which we may write

J? = 301 ey

and from the second equation that we had for the vector field we see that

d (1/? n 2A) — doy
where o; are the left invariant one forms on S3. From equation ([B-69) we have that
2 1 2 2
dsi=\|Z+ 5 [dxl + dxz]

and as we can see from (B.64) the function Z must satisfy

(0 + 03) Z + yo, (8?/72) = 0.

Unlike the ungauged case n = —a where even the very symmetric AdSs x S° looks very non-
trivial, we see that after the inclusion of the U (1) fiber, the whole class of LLM solutions
comes out very naturally.

AdSj5x Sasaki-Einstein (n = —3a). In this case we have that
FANF=4yTNT
and we write the metric as

1 A . - 2
ds® = —ﬁdt2 + h2dy? + yeGng +ye @ [dsi (CCZ) +d <1/) + A) }
where we have rescaled pulled out a factor y? from the four dimensional metric. In this
case we set e =y and
11—92
z=-"Y
214y

From the Ricci form of the four dimensional space (B.6§) and equation (B.61) we can see

that the four dimensional Kahler manifold becomes Einstein-Kahler

R=6J.



On the other hand the Kahler form is related to the field strength F
F=2J.

The above conditions guarantee that the 5 dimensional spanned by the coordinates
(Y, x1,...,24) is a five dimensional Sasaki-Einstein space. The final form of the metric

1S

ds® = — (y* +1) dt* + dy’ + 2d§22+d32(mi)+d(z/?+A)2
- Yy y2+1 Y 3 4 :

4. Conclusions and summary

We have enlarged our previous SO (4) x SO (2) symmetric ansatz [[L§ to include a vector
field which gauges the SO (2) symmetry. The feature that persists after the inclusion of
the new field is the four dimensional Kahler structure that we identified. This might not
be very surprising since a six dimensional Kahler structure has been nicely identified in
for the SO (4) symmetric case. In addition to the Kahler potential a new scalar makes its
appearance through the gauge field as someone would expect. The two scalars are coupled
through constraints which makes them dependent.

The analysis we have presented in this paper is in no sense complete and more work
is required. The configurations we have analyzed are all BPS but the constraints that one
needs to solve are non-linear. It would be interesting to show at least the integrability of
the above constraints and give a sense of superposition.

The question of gauge theory dual for the 1/4 and 1/8 [f] BPS configurations of
supergravity is of great interst [2q-RJ]. In the simplest case of 1/2 BPS, it was shown
that the states were in 1-1 correspondence to gauge theory operators (throught the fermion
droplet picture). This picture was obtained through a reduction of gauge theory to 1-matrix
model problem [[J, [[4]. For the present case one would need an analytical understanding
of the large N limit of a multi-matrix model. It is known that for the case of 1/4 BPS
states the model contains 2 complex matrices [Rf] while for 1/8 BPS states the model is
described by 3 complex matrices. For a study of collective dynamics of such multi-matrix
models see [R]].

The configurations we have described are able to describe 1/4 BPS gravitons prop-
agating on AdSs x S° which, at this point, we guess that are described by ripples on a
four dimensional ball (for the n = —a case) which should be interpreted as the AdSs x S°
ground state. With our symmetry being SO (4) x SO (2) we expect that, among other
interesting setups, the configurations we analyzed describe the back reaction of rotating
D3-branes wrapping the S? of AdSs with two independet angular momentum components
on S°. In this context it would be interesting to think of those geometries as a back reaction
to Mikhailov’s giant gravitons [27].
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A. Killing spinor equation reduction

We start this appendix by giving the reduction of the spin connection on S3 x S*

. 1 4
Wed = Wed — 561{ Gj:c

12 .
d)dm = —565(H+G)émﬂad (H + G) d.%'u

1
aA = 5O F

Sr00 = e 1O Fydat + 23D, (H — G) A+ Leb D0, (H — C) dy
F =dA

where ¢,d = 1...6 are the tangent indices of the dimensional space, m = 1...3 are the
tangent indices of S3.and w.g is the spin connection of the six dimensional space.
We decompose the gamma matrices I'psin the following way

Fp=7%®06 &l
INp=Lkednea,
Fo=1®oa el
where 7 =791...7 , 11 =1'1...T'10 = [ ® 63 ® [5 and the chirality condition for the 1IB
spinors gives
Tun=mn=63n=n,

For the spinors we give the decomposition

nN=€ ® Xa = € ® Xa

where )
a xe’
VaXa = - TaXa a ==+l

For dependence on the coordinates we have
€ (m“, Qg,l/)) = e3¢ (m“, Qg)

which gives
10y = —25

For the covariant derivatives we have

~

1 45 1 1.4 u 1 1,45 u
Vi=Vu— g0 FA + 12Oy Fpy 2207090, (H - G) A,
Vi = Vi — 7036370, (G + H)

1 1
Vy =0y — e F 777700 (H — G)

8

,10,



and for the Dirac matrices we have that
T, = 7,61 +e2HG A 06,
The ten dimensional Killing spinor equation reads
Vun + ﬁPMIH'MSFMI...M5FM77 = 0. (A1)

For the second term we have

M= ﬁTMI”'M5FM1...M5
_ ﬁ 1OPM1M2FMlMQG—%(G—f—H)F&Béa&Bé 4 5FM1M2M3M4Pwe—%(H—G)FM1M2M3M4
after using the two duality relations
M1 Ms _ _éEMl.“MHFMS...MH
and ) 1
Fyy vy = —5672G7H€M1...M6FM5M6 (A.2)
we have

1 .
M = ——*y“l“QFMlMe*%(GJFH)&z (14+T11)

8
1 - .
= —g fO'Q(l—FO’g).
The reduced equation now gives one diferrential and two algebraic constrains for the Killing
spinor
L n-c L L-a6)., v
V- 3¢ FA,+ 16 YV Wou (A.3)
1 -
—i—Ze%(H*G)WWV&, (H-G)A, — 1Ny, — ze%(HfG)NwAH e=0
%e*%U”G) - %”A‘% (H+G)+N|e=0 (A4)
m 1 1 :
[56_%(1{_6:) - ge%(H_G) F+ ZWW)‘(?)\ (H-G)—1y7N|le=0 (A.5)
where

The last equations can be written after linear combinations as

mn 1 1y_ 5 |
[VM_EAM—i_ZeQ(H Drypy Fou— Ny, e=0

Ry

[—aeé(HJrG)w + e 2(H=C) _ Ze3(H+G) F 47y 0H|e=0

[zae_%(H+G) — ne_%(H_G)w — G — %eé(H—FG) Fyr + 4N_ e=0.

— 11 —



B. Supersymmetry analysis

When looking at Fierz identities involving the above bilinears it will be more convenient
to work with the following equivalent bilinears

Z% = —f1 — ZfQ =2c4¢e_ (B.l)
Z7 =fi—1fo=2e_¢e4 (B.2)
Lf = Ly+ Ky =25 y,e4 (B.3)
L, =—Ly+ K, =2e_vy,e_ (B.4)
(J,jfy)\ = 1L VwAE+ (B.5)
where as usually
1
g4+ = 5 (]Ig + ’)/7) 9 (BG)
Yrex = teq. (B.7)

We will also make extensive use of the duality relation in six dimensions between the
gamma matrices

G s o7 (B.8)

and the Fierz rearrangement for commuting spinors

Y19oth3thy :% [¢1¢4¢3¢2 + P1y70atb3yrie — %ﬁl’muwﬂ/;w“ Yahy — %1/;17“771?41/?37“ Y7o
+ é [V1yuabsy b2 — hiyuyrbasy* yribs)
- % [%wmﬂ)@?ﬁ“ PAaby — T,EWWWWMZWW’\W?%] : (B.9)

B.1 Diferrential relations

Taking a covariant derivative of (R.§) and using equation (R.4) we may write

1 1
Vbt = 78 (uexyn + exturn) € FRe 2 OF - esi=Ozyver,,
1 1
=5 (FAQ), e~ 3(G+H) _ 56%(H—G)KV}“W (B.10)
1 1
= — = Fupor W er 6 SO g E, (B.11)

Following the same procedure for (B.9) we have

1 _3
VufZ = _55(7)\g;m - gu)\')/n) gFKAe 2(G+H)
= —e G p K (B.12)

- 12 —



For (R.10) we have

_3 _3 1 ar Lol
VHKP =€ 2(G+H)f2Fﬂp —€ 2(G+H)ZFR>\6WJ7TTN>\Y + 562(H G)flf)\u (B'13)
1 1
= 67%(G+H)f2Fup + 56%(G7H)Fup7rryﬂ + geé(HfG)flfAu (B.14)

For (R.11) we have

1 _3 _ 1 vvy_o -
VuLp = ZFM@ 2(GHH)g (VYA Vu + VuVerVp) V7€ + 162(}] e (Vv =) eFup
1 1
= e_%(G+H) Fu)\Y)\P + FPAY)\ﬂ + §gupFH)\Yn)\:| —_ 56%(H_G) VprVN (B15)

where we used the duality (B.§). One more equation for (B.13) is given by
V., Vs = —e 3 (GHH) [QV[EQ 50 P — FP Qs + 2005 Fﬂeﬂ L O F (B16)
From equation (B.13)) we conclude that
Vit =0

which suggests that K, is a Killing vector.
As we will later see in (B.35), a consequence of (R.1), the 1-form L, is the derivative
of a scalar and so we have from (B.1§) the constraint

dL = 0= Fy, V) = 0. (B.17)

We now take a derivative of (2.14) giving us

1 o
VRQMV)\ = Ze 2(G+H)F PE ('Y;u/)\%rp%@ - %%rp%w)\) €+

N W

1(H_
ez, Fye.
After antisymmetrization we have that
1 ~ 1
A = Af1e 2D E ) + 62Oy Fy ). (B.18)

For its dual we have the equation

_3 o U LH-G) -
Vi (*Q);w)\ = _Ze 2(G+H)F Pe (r)/uu)\’%rp%@ + rVH'Yﬂp’V;w)\) V7€ — 562(H G)ﬁ’)/lw)\ pﬁfpn-
Antisymmetrizing the last equation in s, u, v, A\ we obtain
1opg_
(d * Q)/{;w)\ =2 (’Y/JV)\/{N + N")//i;w)\) Y€ — 62(H G)ﬂné‘w/}\hagyaﬁ (B.19)

which as we see later promotes a 4-dimensional submanifold to a Kahler manifold.

,13,



Algebraic relations. Using ¢ = 4v,, ¥2 = 4, ¥3 = &4 and ¥4 = y,e+ in (B9) we

obtain
LI =o.

In a similar manner one can obtain the relation

;17" =0.

Using ¢ = €5, o = _, 93 = £_ and ¢4 = £, we obtain
1 1
e +mpo —
VAN _Zlul “—l—Eq " Qe por-

Choosing 1)1 = e17*, 1o = €, 3 =154 and Yy = YurAE4We have

lﬂ‘q:w\ = —lﬂ‘q:w\ =gt =0.
Using the selfduality
*q-i- — q+
we have also that
ITA gt =0.

In a very similar way one can prove that

(B.20)

(B.21)

(B.22)

(B.23)

(B.24)

ii-q- =0
and from the anti-selfduality
*q =—q
follows that
I Ngqg =0.
The above two relations lead us to the conclusion that in a frame where the metric can be
written as
ds® =eTe™ + dpee, a,b=1...4
we must have
T =et
Im =e"
and for the three forms
gt =1"n1T
qg =" NJ
where
1
1= 3 e A e’
1 a b
J = §Jab6 N e,

- 14 —



From the dualities of ¢*we conclude that I and J are anti-selfdual with respect to the four
dimensional space. From (B.25) and (B.26) we conclude that

q+7rpaq;po —3 [(lJr . l*) <Iab!]ab) + 2l+mlfn1nkl]l1cn] )
=3(-17) (I“bJab> . (B.29)
We are now considering ([A.4), (A.5) and their conjugates

2
5 [—%e—%&”@ . iyAaA (G+H)— N} —0 (B.30)
1 1 1
[%e‘%(h"(’) + 5770\ (H = G) — geé(H_G) F =1y N|e=0
| _imeq | 1A 1 iw-o —
El-ge e + il v70\ (H — G) + 3¢ F+1ryN| =0. (B.31)

Vector identities. At this point it is useful to see that

1 s
[f)/;u N] = _56 2(G+H)FH>\7)\-
Multiplying (A.4) by &v,, (B-3Q) by v,¢ and adding the two equations we have

g5 {m orH+G) + s M| e =0 =

4
Fo20u (H + G) — e 2GR, =0 (B.32)
which in combination with (B.19) gives the equation
1
8Mf2 = §f28M (H+G)= (B.33)
fo = /ﬁjeé(HJrG).

We now turn to (A.5) and (B-31)) , we multiply the first by &7, the second one by v,& we
add them and in combination with (R.15)) yields

1
3 [—Zw {w,vk}ﬁx (H—-G)—1{yu,N}y|e=0

— 10, (H — G) +%(F AQ), e 3D = ¢
which in combination with (B.10) yields
1
Ouft = 5H0u(H = G) = (B.34)
fl = Ae%(H_G)

We now consider ([A.4) and (B.30) again but this time we multiply by —&v,77 and
—17,7y7€ respectively and add them. The result of the operation reads

aLMe’%(GJrH) + %flau (G+H)+ % * (€ /\F)“ e 3(G+H) _

,15,



Using (B.10) and we obtain the relation

et = —%Lﬂ. (B.35)

Multiplying [A.§ and by 27,77 respectively 1y, v7¢ and adding the resulting equations
we obtain

1

1 1 1
—nef2(H*G)Lﬂ - Ze%(HfG) * Qo FN + §f28ﬂ (H-G) - 567%(G+H)FH)‘K)\ = 0.

We now use and to obtain

Ouet =L, 4 —exH=G) o q \, FV (B.36)
K

1
4
which in combination with (B.3H) gives the constraint

A —H+G (N | &
Ky FY = —4e (E n X> L.

From equation (R.5)) one can also derive the constraints

1
—ac G, LV 20\ H ~ §e%(H*G)}“H,\L’\ =0

1
ne 3 W-C K, 1Y, \H + Ze%W—G)QWﬂ” =0

Rank three identities. We now multiply (2.5) by &v,ux, &Yws77 and take the real and
imaginary part separately

_1 1 3 1y-
ae 2(G'HT{)QW,.i + ieﬂwpagYo‘ﬁBpH + 562(1{ G)}"[H p * Q5 =0

3 1
ne—2(H=G) 4 Qs + 30, HV ) + 56%(H_G)L[H]:W] + Ze%(H_G)ewmmefaﬁ =0
(B.37)
e%(H_G)fn BQW]B =0

e~ 3(GHH) | Quuk + 3(9[,_i HY,, + [
(B.38)

3
2

31 1 14
562(G+H)K[H}'W] + Zez(ﬂ D e papy LV FB =0

(B.39)

1
ne_%(H_G)QWH + §€Mmpagvo‘ﬁ(9pH +

Kahler Structure. At this point we would like to recognize a Kahler structure in the
construction at hand. For this reason we consider (B.g) with 11 = 1y ~%, 1y = e4,
153 =é4 and Yy = %ﬁvéei which gives

poT

v _ — w _ 1_ _
AELy Y e LE1a e s = BV Y Y Ya Y P e LB L EL — = ELV Y Y porVay e LELY T EL

12
= —4ELy" ) e LE1Y e

,16,



Using the identities

YurYa = JarVYu — Jap Vv + Yapv (B40)

YaVv6 = Jay Vs — GasVy T Vavs (B.41)

YuvYaVyé = Yaydpr — 69a7r9'yp9606[;:£70] + 4gaﬂgupguo(57;[§’70}

+ 6gaﬂgwpgéa5%:7pa]u} + 290{[7 Y8l
’Ya’YpaT’Ya =0

we draw the conclusion

art = ¢ (B.42)
JeJb = 59,
Using (B.20), (B:21), (B-43), (B:29), (B:29) and the definitions ([B.1)-(B.4) we have that
L’=-K=f{+f; (B.43)
K-L=0. (B.44)

We now look at the Fierz identity involving 1) = §+77‘57ﬂ, Py = €4, 13 = _ and
s = Y7456~ which gives after antisymmetrization in p and v

4.~ WS+ E=Vuyse— = —128 e E_ey + 1286 E ey

— 264 YywpoE— E-€, (B.45)

considering now the Fierz identity for ¢ = &7, 12 = €4, ¢3 = é_ and 1y = YuE—we
have

ngrV,ul/poef gf’ypac?Jr, = 8€_+’Y[V6+€_7’}/“]67 + 26_+’YW/67 §7€+ — 26_+67 6_*7!“/6+‘
Finally (B.47) takes the form
_ 6 _ _ _ _ _ _ _
Sl uE+ E-Vvjyse- = —AE i ywe- E_ey + 48 e E_ ey — 481 E4E-Y e (B.46)

It will be also useful to consider the Fierz identities with the choice 1); = &_v*, 1)y = e_,

13 = &_ and Y4 = y,7,€4 which gives the relation

E_e_E_yumer =0=

E_Ye_E_ ey = —E_yE_E_eq4. (B.47)

In a similar way one can derive

§+’7ﬂ€+§+’7ﬂy67 = _6_+71/6+€_+67- (B48)
Contracting (B-39) with K#L" and using (B.37), (B.44) and (P.15) we obtain
LMF,, = 0. (B.49)

,17,



Contracting (B.39) with LYwe obtain the equation
nQa LY =0
which after combining with (B.34) gives
n (il+q_ — il_q+) =0

where we used
’L'l;t qi = 0

From (B.50), (B.2) and (B.26) we conclude that
n(I—J)=0.
From now on we assume that n # 0 and we conclude that
1=

Using equations ([A.4), (A.5), (B-30) and (B.31) one can show that
12

1 1g_
€ (WMVAHN + NIY’WV)‘) e = 92 (2 A dG)Huu)\ o 562(1_] G)pn‘gﬂVﬂﬂaﬁyaﬁ‘

Combining the above equation with (B.19) we have that

dxQ=*QUNdG — 23T FT o v oD,

One can easily check that because of (B.17), (B.49) the second term vanishes.

tion (B.51]) show us then that for the form

U=e+xQ=
dU = e (dG A+ + d % Q)
= e% (dG A xQ ++Q A dG) = 0.

We know that

U=e“LAT
and since L is closed we have that
LAd(e%I) =0.
Rescaling the vielbein in (B.24) as
e, = e_%G_%HéZ

we define the metric

and the two-form

,18,
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(B.51)
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(B.52)
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At this point we would like to fix our gauge so that

et = X (dt + Cy,dz™) + Bdy

e =—X (dt + Cy,dz™) + Bdy
K=-Xdt—-XC
L =n~dy

and from equations (B:43) and (B.44) we draw the conclusion that

X=B1l=n2=j 21y2

At this point the ten dimensional metric has the form

1
2

gs? — Yo Va

A A

m

where we used (B.36) to fix

1,....4

H o
et = ——
A y
We also know that the Euclidean space with metric

ds? = hypdz™dz"

(dt + C)2+72h2dy2+67G7Hhmndmmdx”— —yeGdQ?,, — ye % (v + A)2 ,

(B.55)

is Kahler with complex structure defined by (B.54). In order to prove that J is closed we

split the exterior derivative as

d=d+d,+d

where d only takes into account differentiation with respect to the coordinates ™. Then

from (B.52)
LANdT =0=
dJ =0
and from (B.42) we have
J" TP ==y

where in this equation we raise and lower indices using the metric ([B.53).

From equation (B.46) we derive the constrain

HAV+ LY =LAK.

And from equations (B.46), (B.47) and (B.4§) we can derive the equations

iV =fK
ikV =—fiL
iLY = f,K
ikY = —fsL.

,19,
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We now use these relations and contract equations (B.37) and (|B.3§) with L* to derive

An 1 A 1o | R fi
V =CCesHAG) 2 o H o5 (H-G) <f— ——51LlK *6 ]:> + LANK
a 2 B+ 13 B+ 13
SV S g
i+ 7

In order to satisfy (B.57) we find that the following relations should be satisfied

1 Ko
F e iripexs F = —2¢0-H (n+—>[.
f12+f22LK 6 )\

At this point we may use (B.5§) and (B.59) to express

—5(G+H)
I= _le—%(HJrG)V + 1]01622721; AK.
K KT+

One can calculate the derivative of V using equation (R.4) and (.6),

1 1
AV = e2 =LA F - E%e*%(H*G)L A =SV NG =
1
d(e29V) =LA F -SSR IO LA L
The above equation in combination with (B.60) and the fact that
Beg
3+ 1

dK dGNK +dHNK — (f3 + f2) dC

leads to the differential

d(e"T9r) = e L A <5dc — 1?)
K K

K K

1
dJ =L A <5dc — —}'>
We split the exterior derivative as

d=d+d,+dy

(B.58)

(B.59)

(B.60)

where d only takes into account differentiation with respect to the coordinates z"*. From

the above we recover the fact that J is closed and we find also an equation for the y

dependence of this function

0,7 =" L (AdC - F).

(B.61)

Eliminating the field strength. We can use equation (B.1§) to solve for the four form

afre 3Ty = d — ez T-Oy A F

9 2
= - 2f1 SAGAK AT+ f1e 2 G LA K AdC = (f3 + f7) dC AT
fi+ 13
2
EAHCL A F 3o I LAKAF

fo fE+ 12
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From the Bianchi identity we have the constrain that W has to satisfy
FAd <e%(H—G>Y> = 0. (B.62)

Contracting equation ([B.10) with L* we obtain the equation

1
LFO, ff = = 5o LI

) -
3O (7 4 £3) TIACy = 1)10,G + v hreMo,el — =36 Q (+5)

where we used the constrain (B.59) and in the last line the raising of indices is done with
the Kahler metric. Contracting equation ([B.61)) with J we obtain

j@]a Z] Hjl]dng erHjljf’U

where the contraction is done using the rescaled metric (B.53). At this point we find it
convenient to set

k=A=1
=1
Woz:—lz>eH:y.

Continuing our analysis we have that

e ¢ y—n—a 2y
8ylndetg = 2mayG + 27@ + ? (TL + Oé)
where
G— 0,0:K 0,0:K
10,05 K 0,05K

and K represents the Kahler potential for the four dimensional base manifold.
Defining the field

1
Z = —tanh G
2
the previous equations may be written as

%)(V—n—a)—i-%y(n-i‘a)- (B.63)

1 2
Oylndet G = 0y In <Z+§> +£ (—Z+

We are now turning our attention to the component

€2G+H
TpOT
Fy = Al €ir r proT

1e2 (G+H

=1 (f2+ 130,017

— 21 —



Using equation (B.19) we have the constrain

2f1f2
(f2+£2)?
1 .
0,Con = ~17' 0,1 Z.
y

17 0,0 = —

The consistency condition d2C' = 0 leads to the following expression between the scalar Z
and the Kahler form J

40, (%) + d(j : CZZ) ~ 0. (B.64)

The Ricci form of the Kahler base space. We would like to construct the holomor-
phic 2-form B for the 4 dimensional Kahler base space such that

BAB=JNJ.
For this reason we consider the bilinear
V,uu = 5Tr7,ul/776-

Our convention for the gamma matrices are such that

Vi = Y00

T
r)/,u = _IY,LL'

Before we move on with our study we note the projection condition that the spinor has to
satisfy as a result of the Fierz identities

Y0Y7VgE = QE. (B.65)
Fierzing for ¥4 = —y07xA777¢", Y2 = €, ¥3 = e and ¢1 = —y7ywY0e" we find that
VAV = e 2HHD (£2 4 2 TAT.

We consider one more time the Fierz identity for 14 = —y0v, 777", Y2 = €, ¥3 = Ve
and 1 = —Yrps€ wWith which we may prove that

iKkQAY =e “HTAV =0
which proves that V is holomorphic. At this point we note that we used (B.65) to show

that
iKY =\/f2+ f2e"vwovre = o/ fE + f2e vge = 0

as a consequence of the antisymmetry of the antisymmetry of the gamma matrices. We
may also use ((A.4) to show that
ele=0

— 22 —



From the above analysis we see that

V= HFO) Jr2 p23 (B.66)

We may now use (2.4) to show that

. 3 1y_
AV o = ANV — 562(H G)ET’y[W)‘E}")\p] — el (YourN = Nvypuw) 7€

3 1
=1mAN Vo — 56%(H_G)€T’)’[ﬂy)\€f)\p} —ae_%(H“LG)aT*yPW'WE— §V Ad (H—i—G)pW .

We are mostly interested in the case where the indices p, u, v belong to the four dimensional
base space. For this reason one can write

AVrmn = AN Vyn — ge%(H_G)\/ff + f3Cume Y0 'eFum
- ae_%(HJFG)\/le + fzzC[r ET’yo’ymn]*ws - %V Nd(H+G)p - (B.67)
Where we used the fact that because of ([B.65)
Evrmne = 0.
There are three useful relations that we can derive from the projector (R.5)

1
—me_%(H_G)an - ieé(H_G)V[ma W~ elry, le g H =0
3
2

1 _1(H- 1(H-
ae s HAG) Ty e —ne 3 H-G) Ty e ZezH=G) T

7[mna6 ’7:63} =0
ae~3(H+G) Vin + €L Ymni V7€ O'H = 0.

At this points it is useful to note that one can easily prove that F has to be a (1,1) form
and because V is a holomorphic form we may write

1
Vima Foy = izlab]-"ab Vin = =2 (n 4+ @) Vin.

From the first equation we have that

_1
e 2 (H+G) mETVOan’Y?g = Z(van-

Using the second and third lines we may write

3 1
Sert!= 9 VIR + BCumeTa0m, 'Fiy =10+ 0) G Vi

Substituting the above two equations in (B.67) we obtain

dv =1 [nA—(2a+n)C—%JG] AYV.

We may now use (B.66) to calculate

dB = [mA—z(2a+n)C+%ciln <Z+%>} A B.

,23,



From the above we have that the Ricci form of the Kahler manifold is given by
- 1 1
R = —n}'—|—(2a+n)dC—|—§d <j-dln <Z+§>>
« 1 1
= 2aF — " (2a+n)0,J + §d (j ~dlIn (Z + 5)) (B.68)

which is compatible with equation (B.6).

We may now use the constrain (B.17) to write
F=d(7-do).
Finally from (B.63) and (B.6§) we have that

In

0,05 K 0,0pK

K s K Oy K 2

Yy Yy

—2a(n+a)lny —2a (2a+n) F (y) (B.69)
where the scalars need to satisfy the two additional constraints
= Oy K
00 [z + 0, (y—)] 0
Y
_ _ 2 _
00P — x400P = 7 (n+ a) 00K

and the function F (y) is such that
1 oK
Z+§:—m%<%7>+yF@0

We also have to satisfy (.J) and (B.62) which come from the Bianchi identity of the ten
dimensional five form field. We can use the constrain (B.59) to show that

INF=—(n+a)e HINT

We can easily check that the constrains (R.2) and (B.62) are simultaneously solved when

e (n+a)d,In <Z—|— %) INT —eH(n+a)o, <%j/\j> (B.70)

1
—afAf+7<§—Z>fAf:0.

Comparing with equation ([B.63) we see that we need to have

FAF=2(n+2a)(n+a)y t*TAJT. (B.71)
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